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STATISTICAL ANALYSIS OF W*-STATONAY

SERIES OF EVENTS II A DATA BASE SYSTEM

P. A. W. Lewis*
Department of Operations Research

and Adunistritive Sciences

Livi1 Postgraduate School
Monterey, CalIfornia 93940

G. S. Shedler

IN Research Laboratory
San Jose, California 95193I

AITRACT: Central probles in the performamce evaluation of computer systems

are the description of the behavior of the system and characterization of the

vorkIoad. One aparoach to these problem comprises the Interactive combination

of date-analytic procedures with probability mdelling. This paper describes

mtbods, both old and new, for the statistical analysis of non-stationary

univriste stochastic point processes mad sequences of positive random variables.

Such processes are frequently encomtered in computer system. As an illustra-

tion of the methodology an aalysis ts &ivan of the stochastic point process of

trasactlons iattated in a rumming data base system.

On the basis of the statistical analysis, a non-homogeneous Poisson process

model for the trarsaction initiation process is postulated for periods of high

system activity and found to be an adequate charecterization of the data. For

periode of lower system activity, the tramectiom Initiation process Ms a com-

ple structmo, with mre clusteriag evident. Overall models of this type have

applicacien to the validation of proposeed data base (sub)syotem models.

Vrittee while this author we a cemsl t to 134 Reaercb. Support from the
Office oL naval Research under GTent OR! t gratefully acknovledged.



1. Introduct ion

Description of the behavior of a running system and characterization of the

workload are central problem In the performce evaluation of data base syitems.

These are system In whic.h there are many users who can access, via remote ter-

minals, a (typically very large) data base managed by a computer. Such a system

should respond to a query In a reasonably short time, given the number of users

and the nature of the user enwirost. This must be accomplished as econout-

colly as possible. where by economically we include direct customer (waiting)

costs and computer system resource utilizatifin. This is a typical operations

research situation in which we are trying to allocate limited resources In an

optimal way amongst competing demads. Because of the complexity of data base

system, detailed easurements of existing system are needed in order to model

and evaluate them; such measurements comprise just one aspect of performace

evaluation, which in Its entirety would emompesa data collection, analysis,

modelling, and interpretation. Ultimate Veale of performece evaluat ion include

turning of existing system and prediction of performance of proposed system.

This paper is concerned with metho for statistical analysis of serie of

events which cam be applied to obtain a graphical and mthemtical description of

the ksWjj!~ of a runiag data base system. Such a description would be a useful

starting point for studies alme at workload characterization. The particular

analygis of data given uses a cobiation of statistical data-analytic procedures

and probability modelling (cf. Lewis and Shedler. 1973). The specific results

reported bane for the analysis of a mon-stat isnary univarlate series of events

occurring in em DO5 data be system are Intended neither to comprise in them-

sales a description of the running INS system LD? necessarily to be a sufficient

basis for characterizing the workload of an 1DO system. UaLher the results are

to b2 considered Illustrative of methods that may be useful In such studies.

In a data base system the workload way be taken to be a collection of data

sequences Identifiable at various levels of the system; workload characterization

comprises the study of these date sequences (individually and ic' .tly) along with

the tremsformatioss amiag them. We are deliberately vague herr ' *t what is

meant by data sequece; It cou be a sequesce of events occ.~ In time, I.e.

a point process, or a sequenace of observations of a stochattc rocess, I.e. a

time sarivn. For example, In an INS data base system we can consider, at the

user level, sequences of transactions and DL/I calls; at the logical level,

sequences of target segmntal at the segments se;Arched level, sequences of path

segmnt*; at the paging level, sequances of path blocks~, etc. Associated with

these Identified basic workloa deta, s~qaest there may be other data sequencen

of Interest. e.g., the subsequence of path block exceptions. We may also be



iaterested In external sawr - to related to the workload data sequences such
as response tims for users.

Civegi the comlexity of data bae system and the resulting relative diffi-
culty of carrying out meaningful performance evaluetion* and desigms for such
system the collection sad analysis of - - am--t data from representative
system to Identify ad characterize sipificaut performace phenomena seesm
appropriate. The avelabilit'F of such measuremets presents the possibility of
obtaining thereby epirically valid, parameterized mathemtical models f or work-

load data sequences. Ho~wever, the eheer volume of data which can be collected
from a rvauing data *aso system (e.g. tens of thousands of transactions per day,
h'mdreds of thousands of DLII calls per day, millions of path segments per day.
etc.) is a source of soedifficulties. Such a vole of data Is not only costly
to manipulate, it io difficult to comrehend. tn practice It appears that If we
wish i:o do a detailed analysis (and modelling) of any of tke several workload

data sequences entioned shoe,, it is necesary to select "representative"
sequences observed during (relatively) short periods of time. If useful infor-
mot ion Is to be obtained from the data cllection, analysis, and modelling (e.g.
for the deteriiat ion of pertinent system requirement), It is Important to be
able to describe the system context to obich the transact ion workload pbeuomni
were observed ad analysed.

In addition to models of the warkleed, medas of the system or sub-systeri
structure are needed in performace evaluation. The authors feel that stochastic
models of the type obtained in this study hae application to the detailing of
proposed system models, I.e. filling In the flue structure of parts of the model.
A second application is to the "validation" of system models In the sens of
establishing their predictive value. The methods used for the statistical
analysis of data from the rimming system can also be used to analyze the output

of simlations of proposed (emb)systm usd4.. "Agrioement" of a process, pre-
dicted by the system model with the corresponding process observed In tOe running

zysteo would constitute evidence o the predictive value of the model. Thus, for
,exemle, the results of the statistical analysis of the transaction Initiation
pieces. reported here could be used As attempting to validato a stochastic model
ef the IN tiLl omoaamet such as the qosnelag sodal developed Wy Lavesberg and
Shedler (197S).I2. Description of the AviAlable Data

The analysis given here illustratifg methedu for the examination of nom-

StAtioNGy sriesf Of eventg is Of data obtained from an 116 data managemen t
system. The following is 4 brief oveline of the structure of INS.
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INS (IN Corp., 1973) is a processing program for the mplementation of large

data base shared in comao by several applicatioms. The INS program executes

under the operating system of the computer system to extend the dats comnmica-

tio. sad data base msmngsmt capabilities of the operating system. In INS

uers can access the data base from remote terminals by entering nessages called

transactions. A particular transaction uses and thus uniquely Identifies an

application program which processes the message (or transaction) and accesses the

data base. The data meumauent facility of 111 is called Data Language/I (DLI!).

The two interfaces of =. ap#lication program with DL/I are a data base descrij-

tio sad a prop lWdao_ which allan DL/I to process data base access requests

which arise during euscutiem of an applicstloa program. T1 execution of an

application progr thus gives rise to a sequmce of calls to the DL/I component

of MS.

A conceptual diagram of a computer system running 116 is &tven in Figure 1.

As sbhm thete, a portio of smoery is devoted to the operating system. The IS

program occupies a portion of mmry called the INS control region. Application

progrm reslde in secoadary storage in an application program library. For

enecution am applicatiom progra mist be loaded into oe of several (typically

three or four) regions In mry called IN application regise. The data base

reosLdes t secondary storage, and data are transferred into memory for p-ocessing

in reeponse to tranactio. Initiations.

Data a the procoeing of trameactiom hei. been obtained from a computer

system ru-nng I0 for production control under the IN operating system OS.

Entry of data Into the system is on-line sad is ovrned by the occurrence of

events en the production line. The epochs of tie at which individual DL/I calls

were completed (i.e. control returned to the application program) have been

recorded, alg with Inforution sufficient to identify the epochs of tim at

which In dvidual transactions wore isitiatAd. From these time stamp6 the

sequtw. , of times betwe n transaction Initiations was derived. Mbet of the

rsults displayed In this paper Are for a time period of high systm activity

referred to as time period N., This data cosisted of 1999 transaction initLa-

time in a period of time (4n unspae;fied units) of to 11936.6066. Much of

the statistcal asaysis was done using the BASS-IV progri-a (Lewis, Katcher and1eis, 1%9) for analysing series of evets. SASE-IV bh a miuim input of 1999

events; this accounts for tho length of the period under study. This high system
activlty period was selected after an initial overall look at the several days of

datea on tramsactien Initiations wtch was available. The analysis &I" used

gASS-VI (an isproved version of SASU-IV) Apt implementations of parts of AS--.VI,

and APL Implemmettas of rate estiumtion procedures.



,.Preliamary Analysis of Transaction Initiation Process

3.1 Prior Considerations and Aneept ions

TO analyziug the tramectiom inttition data, there were a number of prior

assumtions which could be mado about the data to serve as a starting point for
the analysis. The purpose of the data analysis is to confirm these assumptions
or to point to suitable modifications.

(1) Since the data Is tabes sote A~ whole day (in fact, six whole days), we

expect a tim of day effect as activity builds up through the working

day ad then declines during the evening. Thus, any kind of Initial
analyses based on an asumtion qf atationarity Is inapprop-Aate.

(2) $Ince the data consists of timss of transaction Initiations, so that we

are dealing with a point process or seris of events, the usual null

model which to delineated in Section 5 ft a mon-houogesous Poisson
process (WIP). This could be appropriate here since the transaction

process is a superposition (Cox and Levis, 1966. Ch. 8; (inlar, 1972) of

Inputs f raw a 1 - itr of m rcres (users).

(3) Since each user's activity Is likely to consist of a (random) number of

transactions after initial sign on, ma clustering in the data might be

expected. An appropriate model here is the non-bomogeneous Poisson

cluster precese (Lofts, 1967). In this process -n Initial primary

(min) event Wmrates a finmite equence of secndry (subsidiary)

evento; the complete process Is than the suerposit ion of the priary

and secondary events, where the min evts are assuned to be generated

by a non-hoogeseous Poiaeon process. If enough initial events are gen-

erated (high-activity) so that the number of secondary processes is

large, this process Is bard to distinguish from r Poisson process.

Stwetin from these assumptions * the aalysis of the data proceeded as
follows:

(a) A very rough, mdl-free procedue was used to estimate the rate func-

tion for the transaction initiation process ever the wholq day, the rate

function beit" the derivative of the eoxpec ted aber of transact ions in

a time period (O,tJ. Mei vote would he constant for a stationary

(hsmgseous) process.

(b) On the basis of this trend analysis, relatively homesove high sod low-

aselvJay periods ware selooted, a" as abist amsoftd to verify the

PFum7 .. o the clustering medal, tog the tMmesta initiation

Po**"



(c) Iased on this local analysis and modelling of the transaction initiation

process, more formal model-dependent estimation procedures were applied

to the transaction rate function for the several days. In later sec-

tions it will be seen that the Poisson assumption is reasonably valid

for high-activity periods, clustering becomes more evident at low-

activity periods, and there is a surprising amount of local inhomogene-

ity of -n almost oscillatory (cyclic) nature. It is this last phenome-

non which is perhaps the most interesting aspect of the analysis.

3.2 Analysis of Transaction Initiation Counting Process

Point proceases can be analyzed either in terms of the intervals betwean

events, which is a stochastic sequence (time series), or the counting process

(the number of events in an interval (O,t]) which, as a function of t, is a

continuous parameter stcchasti- process. Here 0 is some convenient fixed

origin, the number of events in (O,t] is denoted by Nt  and the expected

value of Nt  is

M(t) - E{N 1. (3.1)

Its derivative, often called the rate function or intensity function, is

M(t) - = (t)dt

the notation A(t) being generally used for the rate function of a Poisson pro-

cess. (See Cox and Lewis, 1966, Ch. 4, for furthe: definitions of point

processes.)

Note that although the times of the transaction initiation events for the

six days were available, for an initial aaslysis we used counts of events in

successive unit time intervals, i.e. A - 1. This constitutes a sampling of the

data; if the data were from a IPM, these counts would be independent Poissot

variates with poesibly different mans (sue, Section 4). Let these counts be

a, J - l,...,n, whzre nj -N J-RK aid N0 a 0. If these counts are summed

to give counts in C contiguous intervals, they will still be Poisson d~strib-

usted. Such a sumation can bit considered as

(1) a crude susechinu of the data to obtain an estimate and picture of the

rate function omr the day. Thus, since A - l,

C a

ie wafths An the s5m At all bow value 1/C. This constant smooth-

Ing fumttio must be used with caos; it cam etusa spurious efficts if

the rate is not c'inglag liearly.

(2) a oaesoci of count data to test for homogeneizy.

Ii



Plots of the smoothed -otnts using 4. 4110 are shown in Figurt -2 tir I of

the 6 days. and for the average of the smoothed counts ever all 6 days. Formal

tqsts for homenelty are- available for Polssom variatm (Cox 3nd Lawis, Ch. Oij.

or else a one-4ay e alyst of variance cam be performel on the coalesceI data

after a square root transforation. The melysis of vsariance test li ,ok.d be-

cause the counts are large enough to be considered to N' normally distributed;

the ;quare root transformation is used because although Poiasov count% with s

large man are approximately normally distributed (see Table 2.1. Cox and Iewis,

1966, p. 21) the mean and the variance are the same, and this violates a basic

assumption in the analysis of variance tr-,. The square rv)ot -F a a .r:-

ate N plus one-fourth, t iwi7i, has mean approxfmately equal to .-. an,

variauce 1/4, where U is the Polsso mm (Cox and Lewis. 1966. p. 41 j.

The analv iq of selected time periods reported below it for periods choer

from day 2. In Table I we show in successive colums the nur~bar of counts

(transaction initiations) in successive group. of forty 120 time unit period%;

the mean number of counts in I time unit (the rate function estimate plotted in

Figure 2) for day 2; x the average of forty quantities xij il
1/2

{(mber of comts in jth 120 time umit period In grozip i)+1/4, ; and

01" the within group sample variance and standard deviation respectivel).

Firstly, it can be seen that all of the varimaces -. are larger than the
value 1/4 postulated on the basis of a homogeneous Poisson count process; since

39,a2/(14)156 x2 should, under the null hypothesis, have a 39distribu
:Ion with upper 992 point of 62.281, all the ;2's are significantly large (i.e.

I
greater than 62.281/156 - 0.3992) and either the Poisson or homogeneity (within

group) assumptions are invalid.

Comparing the sum of the within group sample variances 2, which is

48.1826, to the betteen group variances (or sample variance of the xi), which

has a value 1.7126 we get an F-ratio of 19.4878. The F-ratio, formally given by

xi
F-

has an F-distribution with v I - (a-1) xk - 39x 12, v - k-I Il doerees of

freedom, and the value 19.4878 in Table 1 is highly significant at a 5Z level or

at P i level. We conclude that the data is inhomgeneous, although departure

from & i .son assumption has not been ruled out.

The ovecoll picture in Figure 2 is of an initial build up in transaction rate,

a fairly costant transaction rate for a period of time, mad then a drop to a

lower level. This picture is consistent over 4ayal the arop in day I (around

t - 165838) was due to a l-eriod for which data was not available.



Nowever, eve io the two relatively stable periods. there Is some evidence
(lare values of I2n~ Table I relative to 1/4) of more microscopic inhomogene-

ity, aid the anlysis proceeded by examining se~tiona of data In these high and

lou-activity periods to more detail. The examination vas of Interest ;-r se, but

a" also motivated by a need for more formal statistical rate estimation proce-
dAse

Mib~y parametric global procedures for rate estimation are available at

preent '4Ly for Mff's. Details of the procedure and the estimation are given

io the seAt two sections. Application to the data for the high and low system

activity periods amd for the mitire day io described in later sections.

In addicie, aos-psrsmstric local smoothing procedures related to kernal-type
density estimates (Rosenblatt, 1956) are used. These are also described latLr

(Section 5.2). first we give properties of the NBP,

4. Ph-M__mus Poisson Process Mlodel
The mem-homomesous Poison process model for a series of events N tis dis-

cansed In a statistical context b:!' Cox and Lovis (1966, Ch. 3). Lewis (1972),
Cos (1972), snd Ik- (1972). A very detailed mathemtical account is given in

(nedemlo and Kowelaeho (1909); a recent treatment Is by inlar (1975). Like the
bI Mu Poisns process, the non-homogeneous Poisson process arises as a

limt of the sqwrpeitmm of a large number of non-stationary point processes

(cf .paisr. 1i72). The assmptione underlying the non-homogeneous or time-

01epoodwit Poissom poces (MP) are the same as those for the ordinary Poisson

pmoess except that the rate parameter A io now considered to be a continuous
function of time A(t). One approach to the MW? is via the incremental proba-

bilities In small intervals. Thus, for s~t zO, and denoting by N(s;t) the
00er of events An the premes in the Interval (t,t+a), the assumptions for a

Nit with tate function A t) are that, as a -0 0,

Pr(I(s;t)a01 - -A(t)s+o(s),

Pr3(~t11 X (L)s4o(s), (4.1)

and that the rrjm* variable 0(9;t) io statistically Independent of the number

end pesfios of evasts In (O,t). As aconsequence of (4.1),

Fr{I(s;t)k 2) a o(s).

The survivor uctlen for the forward recurrence time in the pror~ess, the probe-I bility that there are so eownts In (t,t~sJ, I.e. that X(s;t) *0, is derived
via first-eider diffrroeil equatious to be

IUsit) *exp - ) (Uz)JU ~ (4.2)
t



A more general approach to definaig the P starts with the function A(t),
which is assumed to be monotone oa-decreesiag smd continuous from the right;
then the number of events occurring in y isterval, say (t,t+s], is assumed
to have a Poisson distribution with parameter3.t+S

A(t4s)- A(t) " J A)(u)du,

i.e. for k- 0.1,2,...

Pr(N(s;t) = k1 - • Ata)At)

Consequently, A(t) is the expected value fmactiom (t) discussed in Section
3. In addition, the number of eaets In ay finite set of non-overlapping inter-
vale are assumed to be Independent random variables. There are ether equivalent
definitionu, and also minimal defiuttioms; see Cnedenko sad Kovalenko (1969) and

Lnlsr (1975).

The following theorem (cf. ;Ia1ar, 1975) establishes that a homogeneous
Poises. process of rate I cam be obtained by trsmformtion of the time scale of
a NHP. via the Inverse of A(t). This reslt, Theorem 4.1, mad toe following

Theorem 4.2 are the basis for the procedares dscribed in Sections 6 and 7 below
for detreding the data and tsting the 8oodnes-of-fit of the NM model.

T m 4.1. Let A(t) be s m rJt-esmtimus fumetim of t k 0.
Then TI 1T2 ,..., are the U .. o- m-a o tS a IMP ulth R(} t), It and

* ~ ~~ ~ 1ii 2i r A(). (7 2 )"*. m the a~~Out a hsmsmme a
Pain raae s with rate 3.

The next theorem establishes am Imp tmt prerty of the MP wMch we use

throughout the er.

!hoq 4.2. Assume we have a NW? observed for a fixed time (O,t 0 , in which
3 -m events occur at tius. T q T  ... T - too. emdt tioeal e having

vd n(O) events t the 0 to. he T1s are disetibuted as the order
statietes from a sawe WIth dietrgoueIn fuentio

FMt) 0 _ t ).A (O). 05 t S t o *

mad wb A(t) i aboe1.utely cmlmman , pobablity demntty tumetins

The , we see that (ceedtIsmally) the trameforamtsmi of the time asks is

lmmctly the same a thie proboity ImtWL transform which is used to trmaform

& ramda. variable I with kamom dstri tli tention F(x) into a uniform
ranom mciable on (0,1), .e. a - 11M Is mnmorm (0.1). This transfumtion



I Is the basis for sanwamtric tests of distribut ion functilons such as the

obtained fro ldependent, identically distributed samples; the primary differ-
ence in the two procedures Its In the alternative hypotheses which &rise (see
Cox ad Lewis, 1966, Cli. 6). Specifically, If we test that a random sample

X, 9 2~ 9*009 with uinhamm distribution function F(x) Is from a given distri-
bution functimn 1 () them if Fo(x) 0I ?(x1 the variables U1 - OX,..

% a 7 (1 are t.i.d., but not iforuly distributed. However, If we test

(cmdtteoadly that n observed times-to-events T,,,,, T, are from a NW?
with Sie integrated rate function A 0(t), than

(1) if the pvces Is Nil?? but A (t) is not equal to the true integrated
rate function AMt, than T' OT~ . T - A (T are i.i.d.,

I 0( 1),..,n A0(
but not uniform (O,t 0 1

end

(2) If the proee Is not VW. them ewna if A 0(t) is equal to AMt,

the Ts I 1..n are Vt~ conditionally a random sauple.

The above lea&& to very different considerations in the pm of testb for

UI's mad completely specified distributions, ven though the test statistics

are the eom (an Lasts, 1%So fur greeter detail). It Is difficult In testing

for MP'a with procedure hewed on the Mkmv 'theorems, to separate out the
aftecte of departurs from Poioses assmptios and departuree, from aisumpidns as

to the form of A~t). Nov-ever, since both 3MP's end 3I'P's have Independent

count Iacroemsts, tests for the global Ptoses assumtion are based on this prop-

erty. In particular, the spectrum of cewats (Cox end Lewis, It"4, Ch. 5) should

be flat after detreadlag.

In the followiag ection we discuss etinst tea of the UP? rate ~*x

usiag pesestric models, both to describe In a global vey the rate function (as
opposed to the local smotbiag Ila 1 )t' -).d to dettmd the data so s to

exomine the global Poise.. assumption. No-parmtric rate estimation is also
briefly discussed.

5. lstimtim of the Ir 1et. Vctqm

5.1 Paamtrie Model mad late Rstimatom
Follwg Cox md &mwts (1946, Ob. 3) wm4 Cox (1972), en exponential poly-

nomial rote tvactiae he. boo ased for the UP?. I.e. A(t) of the form

I (t) *mV -l O~ 4*01

ts aemptitte Is eamvestant and coettuta s real r~trictism slacc any



costimmovs rate foactisom can be approsimted arbitrartly closely by an

em'yneatial polymemWa. *a. result follo (no results on ordinary polynomials

by taking logarithm; nete thot A(t) a 0 or any vale" of noal..tr We
describe no statistical proeb~mis based sm this model. Formul tests for the
degree r of an empesetial pelymemial rate function are discussed in Section 6.
Nome a procedure is oellmed for the ammian libalibeed estimation of the coeffi-
ciens (sm) of an exponential pelyeei. of fived degree r.

The tius-to-events T < T2 T? Insa fined tim period and the random
variable NOt0  a have a Joist density function (Cox end Lowi., 19", Ch. 3)

40f X(u)dua
I A (t 1). (5.2)

Lil

which, om substituting the rate function (5.1), becomes

a *3*f enp catc)dto (5.3)

when

aa t,.+.+r (5.0)

Thus, the log-liaelibeed functe., leg L, the logarithm of the density at
the observed vale, of the ? asdom variables considered sa function of the r+ I

permeters, is
1% r

loS L(aG09sio....e) %am f axp(~ alt)dt, (5.5)

It follows that the derivatives. knw as the scores. are

Hgg L J0 tk o aup a at)4t. k a O0,...,or. (5.6)

?be solutioe G(a ) to the sates of "as. (5.64). the score vecto, bee set to
aer*, we the mabms tlowd i sowvi of (%), * mana be determined
nmrcally by Uawtow-Rapheem Itaetion. Ibe amarlic pueomere mein well pro-

vided that am initial vecter euificsSmly awe the elatim is bwom. A two-step

methed for ebtaialag such as initial valme bee bas propsedi by NacLan (1974).
Us procaeure emelats of finding =m odinmy pelym..hi rapmeseaati1. of the

am degre as A (t) hevig Meu observed Sm of pint (a a) few its "nemsts."



to estimaste the coefficients f).The procedure appears to work well for

pelYsomWal up to degree S. lstlentes of the covariance matrix ' the muaxm

lihelibood estimates (im) are obtained from the second order partial derive-

tue.o of the log-likelibood equation when evaluated at the estimates parameter

Values.

Once the appoprte dooem of the polynomial to obtained by the vothods of

$"ties 6, the rate function with the maim lihelihood estimates for the ms's

cam he plotted to obtain a picture of the rate function. The procedures are

clearly eenatt.'-ve to the NWt model-, for this reason, we discusa next mm-para-

mtric kersel-type estimates.

5.2 bao-peamstric gernel-type Rate Istimates

Theorem 4.2, which relate. (cmditionally) the rate function )(t) In a NH??

to a density function In (O't ah

suggests me could wee mo-pwarmtric probability density function st iates to

estimate rate functions, at least in hf' s. The procedure chooe Is the now-

parametric kernel-type density estimate introduced by Rosenblatt (1954). briefly,

the procedure to estimate f (t) f rome randomi sample T, T2 9.vTn Is as

foles":

where V(s) is a bouded sam-egtive Intepamble mei3bt functiton with

fV(U)du - 1.

and b(s) tos apositive beadvidth function which tends, to amr as a me but is

such that e(b(s)) a I/s. Thus, we utet have b(a) -sa-/2 , for eveule.

oste that for a ivea cot of ebeoruatism, a& estiates of the form ane

end cisc. the It' at e ds vriables, in (t) is a enteu parameter

stochastic preowse buht slowrly s-ftettemey. Althoug this type of density

setimae doe an "Vepi pwere aseiaptis to be ends about f(t), the

I dsidith Luntios end herol V() meat be chesen. to this pooer me %aM
112airoedy chasen V(u) to he a trismelo, function ad b(s) toabe 1.25/a



Te conditinl structure of the UWI akes the estimat ion of the rate

function AMt similar to the nom-aritric estimation of the density function,
but with two differences.

First. core must be taken with normalization of the rate function estimate.

This is because the procedure above estimates the rate normalized by dividing by

A(t 0 ) - AM0 and v(t 0 )- AMO is unknown. For a M~IP this is the mean of a

Peisoon variable which to estlisted by a, the number of events in (O,t 0].

Usin ~hs etimte oi~At) - A(0) we then get, as a rate function estimate,

j )~~~(t;n~t) nft)a~ 1 -

This will be modal about the usual estimate of the rate X in a homogeneous

Poisown process, which Is estimated by X^ - nit 0 . The second difference is that

when the density function estimation technique Is applied to rate function

estimation there is no asymptotic justification for the procedure.

6. Tests for the Degree of the Exponential Polynomial Rate Function

6.1 Theory

The analysis of trends in a NMP, based on the assumption of an exponential

polynosmial rate function, is discussed in Cox and Lewis (1966, Ch. 3), and Lewis

(1972). In the latter paper, formal tests for the linear and quadratic term in

the eqiemetial. polynontal are derivsd. Ve ase bore a direct extension of these

metbade to yield tests for higher degree term.

There are a number of possible hypotheses which can be tested when consider-

Ing the exponential polynomial rate function

r
A(t - ezp(!Ia uta) (6)

(1) Soft given subsets of the r+l par toes are sero. Asymptotic tests

for this hypothesis are based on standard maximan likelihood argumsots;

am can (1972) oad macLes (1974) for details. Issentially the maximam

values of the llhalibsod functiens under the two hyptheses are comare4;
the tiffe"sse has (asVmtetically) a X2 dietributies under the null

hypothesis with boo imeee of fte. The problem with this teast lot

phesol-r&3; es selm ka e pa #Asri which subset to test.*

(2) It is posesible to ask which subset of the r +1 parameters tve the

best (=at psrlsiiniwu) fit to the data. This bas b~sm worked out f or

13



polynomial terms. This Is reasonable If the exponential polynomial is
beig ued n apurely descriptive way, and the statistical theory isr

*k~l~sm+2oposs(Th anlojus nrma tie seiescas Isconsidered

in great detail In Anderson, 1971, Ch. 2.) A possible drawback would

occur whore there is a cyclic effceg.

A sxP(G0 +k sin (w 0 +oe)). (6.2)

The series expension of sin (w 0t+6) gives a polynomial with alternating

zero and non-zero coefficients for powers of t If the phase angle is
appropriate. This In turn Is tied Into the starting point of observa-
tions.

We develop the procedure now for case 3; we have used It In an ad hoc manner

by testing until two or more successive sero coefficients occur. for a On? vith

exponential polynomial rate function

A(t) 0 039p( 1 amt)

the likelihood of n events In the period (0,t0  at time t1 < t2 <i

L(cs@~eettar) a0 e2G( sa -f ezW(f ot')dt) (6.3)

where

1

The ob&,ervstioos (t enmter Sq. (6.3) only through (nItiIjt2.....It~

ad It can be, shon from the exponetial form of 3q. (6.3) that these are a set
of sufficient statistics for the set of parswi.ero a 61020" There Is,
housever, even mr structure sad a forml test for the r~bk degree term to the

oewommatial Pelymemial rate ttl. can be hosed ims the 14" that ftor my given
r sad art (mj0tip...,Iti) are a set of suffist statistics for i n

.O~*aOrj toioe the distribotiss of It~, gives 01.Itiot 9t nesd
ent of 400,00,16 rM4 for 41l value of %. This 1* emvemNsat slaus we want to

test a, 0 sp~mat ar 0 0 repsrdleas of the values of 140*#**to rl' I.e.

Demaift t I/to by II aMi by ell tom't fez 'is to b based on
the statistlc C mmd Its sell hypothesis comimimal istributien, gives

a). Uiw, sayuqotteally clot 2 **got imod 4 will U. jointly normally



distributed with moss value and variance that can be obtained from properties of

the uniform distribution. We assme a uniform (O,t0 ] distribution for the

t 's since (n,rt...,It-" ) are a set of sufficient statistics for

a 0m l ' ' ' '. ' ar - I so that assuming these parameterb co have value zero does not

affect the final result but does simplify computations. Then, also asymptoti-

cally, the conditional diotribution of cr, given nl,c...,cr- 1  is normally

distributed with mean Pr a 1(c Ic e-cr2 '""el'n) end variance q2 a
r -• r2''ln r

Var(crc r-l,...,cln) obtainable from normal theory.

The normal theory results ae that to test the pull hypothesis H0

M r -0,0r+l,..., but ('A '".r-I have any value, compute the statistic

U - 6.5)
r r

and test as a mean 0, variance 1 normal deviate, i.e. accept N , say,

a 5Z level if I U r 11. 6. Expressions for Pr and ar  have been derived by

techniques of symbolic mathematics and the matrix operations above. Details of

the derivation will be reported elsewhere. The case r- 1 is discussed in

detail in Cox and Lewis (1966, Ch. 3).

6.2 Applicatioa to 9$ Levol (1) Data

We disoee o the app9leftima of the parametric rate fmctism tnetbm schem

of the previous seection and he rate estimtion procedure. of Section 5 to a

ma eirecopic examiatiom of the tra sactia initiation process during a

period of high system activity for day 2. This higb-activity period is, in

Figure 2. frm approzuetely t - 73728 to t - 03651. We will also use the

kernel-type density estimate of Section 5.2. We do this most particularly

because the VMP assumption he, at this point, not been validated. Overall

cbaracteristics of the sample o s shown In Table 2. (The sample momen a given

there should be used only an a guide; they are meaniagless if the data Is

The fhftZ qumeties to be addressd is Methoz the dta am, in this relative-

li shet hg-et vty period, be comsidered to be apprcmtely bomagasoes or

statiomary.

M n 3 shum dh emasi m ba of __measee*ew aw'tledor 4 g this

tim period. The departure frm UaerUy ts falp gsow; sm mie8 a bempseous

Poisem process, the Kolmsprov-Wmorev mesre of tke departure from linearity

I sows"q VF()-ul, (6.6)

isslow"



This is the uniform conditional teat in Cox and Lewis (1966, Ch. 6); conditional

on the observed value N% t 1999 of events in (Ott0 ) it has the usual

Kolmagorov-SmItnov taigcdistribution with upper It point 1.628; the observed

value is 2.389, which Is an event of very smell probability une the Poisson

These probabilities could be grossly in error If the data was more dispersed
than under the Foisson assumption, where by dispersion we man either that the
standard &2viation of the Intervals betweeii ovents or the counts of events in
long Intervals is larger then would be expected under a Poisson assumption. (The
two are not independent.) The*e dispersions are usually measured by first normal-
Ising to give the random variable Z am one; for Intervals. the result Is the
coefficient of variation, i.e.

CMZ a a. d. (91 .qZ
Z) 11z) 0 1M)*

To examine the dispersion of the Intervals in the data without ccnfounding
it with the apprent inhoisoganety, the 1999 Intervals were divided into 10 non-
overlpin eectimsu. The sample characteristics for each Interval are shown in

Table 3. The maswthin each group could be used to teat for inhomogenety,
but am Inortsetly the cost ficients of variation, skewness and kurtosis, which
for SIRommwtaly distributed Intervals have values 1, 2, and 9, resipectively,
give us rough measures of departure which are sufficient toi validate the tests
for tweed.

Table 3 gives so Indication that the sample characteristics of the intervals
of the process depart from ant exponential distribution (although there wasy be

correlation between inteivals). Mhe sample coefficients of variation are all
aron.e s Is the sample coefficient of variation for the whole set of data
as gives is Table 2. We. thierefore, proceed to use techniques be*ed on the Mil?

medel to emesime die treed ton more ietail; further tests. of the Poisson assump-
ties for this section of data are $Iven in Section 7.

2Wb1& 4 gives sweveewiwe toV. otattftic values for the tests for null
Parmew tn tae eqweti l neme" Mol

fairly Infa lley. A~Z formalt1 appliatio Kmdogetsopiga n



acceptln$ a log-linear model

)(t) * s

but the test statistic for a3V U3 0 5.3138 is significantly large, and the

testa have been continued up to ru 9. For r-7,8,9, the test statistics are

a11 small, well within the 5% limits of 11.96.

* Table 4 also given the values of the log-likelihood function evaluated at the

maximum likelihood estimates. The log-likelihood must increase as more param-

eters are added; the difference, when suitably normalized, is used to test

(asymptotically) for inclusion, or exclusion of parameters (see MacLean, 1974 or

Cox, 1972), and is known asymptotically to have a X2 distribution. The abso-

lute differences, 5, liven in column three of Table 4 are clearly correlated

with values of the test statistic U , e.g. the large jump of 13.4 when includ-

ing a3 in the likelihood goes with a large value of U3 .

The results of both the Ur statistic and the likelihood function values
suggest that an exponential polynomial of degree 6 will fit the data very well.

The maximum likelihood estimates of the parameters and normalized values are

given in Table 5. In computing these estimates in an APL program using MacLean's

starting procedure, it is necessary to use normalized time t/t0 a u and normal-

ised parameters a, Ont o  to avoid scale problems.

The resulting estimated rate function X(t;&) is plotted for the high-

activity period in Tigure 4. The data gives an Intimation of a growth plus

cyclic effect of fairly long period. A model for this could be

-(t) a exp{%4t+ 2 sin (N0 t)};

this is linear in the parameters if w0 Is fixed and known (e.g. time of day

effect). Moreover if the Taylor series expansion for the sine function is aced,

one has f eeomtial polynomial vith even index parameters (beyond veru) equal

to zero, I.e. a2 -%-o ... =0. This is the reason why the test for the order

of the epemestial polymomial indicated that we should have stopped at r 2,

sad thee Vaw sn td"Icattem thet a3 was ns-sen. Cyclic effects are mote

easily boadled via spectral vmrbds ; v return to tbis in Section 8

Ame ter wy to exa.me the tread s to use the kernel-type local moockti

techaiques of Section 5.2. Althswou these hew breader mlcab'lity the the

particular glbal fitting under a WF apsawptlo, they suffer " in all mon-

parametric density estimatie (spectra, rate functions, probability &maity

fuettom, intemety t umtisme), fim the need to cbOee a vuitable kernel and

bes, th. Is practlee, it ts aeaUly vessmable to teke a lw different

lip



bandwidths and, by eye, Judge when a balance beween sall variability and small

bias is achieved.

A kernel-type rate function estimate X(t;n,t0 ) - nfn(t) with bandwidth

b - 1.25/n1 /2  (chosen in the above way) 1 shown in Figure 5. It again shows
possible oscillatory behavior in the data, or greater dispersion that we would

pect under a OF sasuuption. Confidence bands for this type of estimate are

availabla (Dickel and Rosblatt, 1973, Lewis at al., 1973), but we have pre-

ferred to give, in Fipre 6, an identical suoothing of a simulated homogeneous

Polson process of rate A - n/t0 . Comparison of Figures 5 and 6 graphically

illustrataa that the data is not a HIP. The lack of g8oss departures from

Poisson-type characteriatics for the interval structure was discussed above;

over dispersion, rather than a trend, could Sive the large fluctuations in the

rate estimate.

In Figure 5 there is a large peak at about t a 3000; we have examined the

data for any obvious anomalies at this point (e.g. vr/ regular intervals) but

have found nose. In Figure 7 we have overlaid the estimated Integrated rate

fusction A(t;j) (exponetial polynoal degree 6) on the epirical estimate of

the integrated rate function which is just the cumlative number of events in

(O,tj as a function of t.

6.3 Applicationo to Lo-Activity (L) Data

We am give, in abbreviated form, a analysis of lou-activity (L) data, which

is similar to that given for hlgh-activfty (2) data ia the previous section. The

low-activity data is the period beyond t - 145152 In Figure 2; the data is for

a time period of approximately 1.15 times as l as Zer the high-activity (U)

data, mad only 1258 events (trenastim imittation) occur. Overall character-

istics of the sample are shmm in Table 6.

A adifte obeervatLo free Tble 6 is chat the ceffLcst of variation

of the aterval is hgh relative to the valu I for at ei'onestt a y distributed

.7. variable. b eens this further, five s ctins of the data were takes

and the interva& charecteriotie which were computed are gives In TAW 7. Rach

section of data costamaed 21 observatlass. It s fairly sppemet that the meas

are decreasing (sate is anmaseg) owen the 14v sections, the suesslve

differmaose, on the basis of the estimeted standard deviations of the man anti-

notes, befn aboat three standard deviations. M.er, all the coeffieants of

variation, esefflets of obomas., end kartosis am larger them the correspend-

in8 valwes for 6 Vean pmeeae.

The first sss ftre the -%ove e pS t is that prsrtarc detrendft

far this 1SW"0ft e da08 Ast he dM With eu W retu iS Section 7 to

1 . )



consideration of details of the structure of the low-activIty process, but since

the intervals are more dispersed than for a Poisson process, there is consistency

with a cluster 1.ucess hypothesis (Lewis, 1967, Vere-Jones, 1970). Note, too,

that & cluster process will look nore and more like a Polson process as activitv

increases and this is consistert with the fieding that the high-activity data

was approximately Poisson.

Returning to the trend analysis, we show in Figure 8 the cumulative number of

events In (O,t] as a function of t, which is a non-paraintric estimate of the

Integrated rate function (dotted curve). It is by no means linear, and the

Kolmogorov-Sirnov test statistic (see Eqs. (6.6) and (6.7)) has value 6.048.

This, we would surmise, is significantly large even if the Poisson hypothesis

were not true.

In Table 8 we Sive the successive test statistics V for successively more

couplicated euponential polymomial rate functions. There is a very definite

overall inctease In the rate, a measured by U - 11.696, and again a phenome-

non where U2, U 4  and U6  ar, &ot siPificant. Iomvewr, it can also be. seen

that the tests are significant out to re10; it was not possible, even if it

were desirable, to carry out the computations any further. The maximum log-like-

lihowis are also given in Table 8. Since the data is non-Poisson, the likeli-

hoods ut be Interpreted very carefully. It is conceivable that using a lMkeli-

hood bared an a Poten prce weuld force the rate eatiation procedure to fit

the ir-egaularity due to overdispersim by added local wrinkles in the rate fue.-

tion. It is, in fact, always difficult to discriinate between inhomogeneity and

over-dispoteos, but it is almet cartel that it is the ows spetarus which

give rise to the high dgrwe of the fitted polyomIal for this data.

With the above qualiflers in snd, we have fitted an exponstial polynomial

degree I to the data. Do" I wa chosen because of computational limitatonss.

The Integrated rate function A(t ;i) is show overlaid on the som-paremstric

estimate to Figure 8 the elgbth deree e omemtIal polywaial e fuction

(t;:.) with estimasted prmers to sam t Piure 9 (eslid cvve). ApSJ the

outstanding feature is the cyclic mature of the rate, suerposed on a. gerally

Isresi8 rate.

"h bheel-tm setimer ictate. of w he ve fstiem to als imq

Fie 9 ( A -b ensue); it A *Am 4 m g - t It the o emqs al poly-

mmstal rate Fmu s en a fe m o t ti premer edug M sm umr mass
O dalfitn PON -pI 11 m dporkow two 0 ParsO Ne welms; It smytili, tbse

is a fafrly cew veliftlm ei ift veite to WM 4 dwo as emsosM poy-

SNOWd Vat* tWOS M aIm !d 1 MO O 48 16 na.



It Is also of interest to Aote that the estimated parameters ar with even

Idex r are negative (Table. 9), a pattern simlar to that for the high-activity
|dos eA- in Tabla 5, where O, ;29 a4 and G are negative, the remaining

Iestimated a- 'a being popitive, ThisIs ispin illustrative of the cyc",i. o.ffe, i
I ar

Is the dots. It to diffic-ult to compare the magitude of the estimates !a the

two periods snce, if tivare were a cycle to the data, the re.ative phase at the

esinin8 of the period of observations would influence the parameter values.

6.4 Applications to Coplete Days Data

to Section 2 a very rough mothing produced the smoothed estimate of the

rate of transaction Iitiations given I Figure 2. It is of interest to apply

the gLobl smoothing based on a NMP? assumption and an exponential polynomial

rate function to the complete days data, even though it is not Poisson at low-

activity, so as to have a torm, easily Impleseated procedure for this type of

data which does not Involve a choice of -mothing functions and bandwtdtns.

Over the whole day 25,076 transaction initiatios were observed; detail, of

the tooting for the degree of the eupmenti&l polymn1al, and the values of the

estimted parameters are sot tabulated here. Briefly, the tests up to r- 10.

ezoep for r- 2, indicate that the parameters are ona-sero. Computation of the

moments for the U 's only up to r-10 imposes a limitati-, a the fit; urer

importintly, estimation of par•mters in an eqpmaential po .- 1*l for an eutire

days data is sot feasible for degree greater then 9. Thus. n Figure 10 we have

eerlaid e the rate stlmte for do 2 data given in FLgre 2 an exponential

polynmmi l of degree 9. The agreemet hetusem the two estimates is good.

Me madd empet chat am the degree of the pelymomal mat up, the local f luc-

tuantlems for the kIJ and k* -activity aecti1m would apper. The coaputational

problem, Iraver, are hotrandow; it uuld be simpler to connect up polynomial

rate fmictlm setimates within oweir. contipous sections. This has not bean

pursed; hI particular, It is sot cleer the pollmonials would comect smothly.

Mae vsgaU m evlemi of this sectios i that the data to roely ase-being-

al pos@&. remum wll he disemmed to Seetlem S.

7. %e te of Pit ef tie W

In the discumio of Sctim 4, it mas noted that by trasnsiod8g the •beer-

m am a uth hesm ze IwA ms e ttmt Wda thmo-to-eveas become

TO A( ),.' A 0-9 t is Poeses Is a hmemoms ftissa pro-

elas "at Mit so* fmatim. sUe . by esaliins an the m.tli 6 events
to (C6%1 W (S.A(%)I# the pabim of Mmeig Oe a s men be reduced to

testIMe. fag mam d"es~1 Noa t sz eW' ame orer MSetIcs

ft. a wifarm - srfbetiam. Other Saas me gim to Caxm ad It-ia (1966, Ch. 6).



The tramformution is sim t Figure 11.

Testing for a 33P with mhwmn rate fmctin is more difficult. The analo-

gou problem in resral.o asalysis io to test the usual assumption that the

reeduals i in an additive medal

T + (i;)+c i

are Idependent normal rasdim verials with man xero and constant variance C2 .

The problem is that after estivatia the permetric mean value function, the

residuals -M Y I- (i;_) are so loqee independent and normally distributed

(e.g. sae Daniel and Wood, 1971).

An analogous procedure sugpetrd by Lewis (1970), using Theorem 4.1, is to

estimate the parameters in the parametric rate function A(t;*), which we deante

by A(t;a) or A(t), via mulmm likelihood and then to detrend the process by

transforming the procies to obtala - -A(;2), T,.., We would

eapect the dapartsm frem a hem aem poese to be w 1l if the mer of

eaboamat is large and the amer of poretoers ar'ill, aod, of course, if the

completely specified EU? Is cereCt.

Very little is known about this procedure. Note, however, that If the uni-

fe onaditlaes test io aeod with (emUtmi ma) Klomosurv-Smirmov statistics,

the PuubUM s of _ .--- - teats of fit after parameter estimation.

LiU~oefe. (1967, 190) boo fiswsipad tbs for eaponami:al and marmal random

varlables; an expected, vie estimsted distribution function (integrated rate

feuctem) Is an ve@, cloer to the sdrical distrLbution function (empirz-

cal Integrated pate function) them Nitheut pameter estimatiem. Mwe recent

work om Volangurov-Smimmov tests with e t mted parm ters ti not yet dovel6p4w

for our purposes. Tests for a hmgumaa Poeam process based on spectra (Cox

and Lewis, 1066, Ch. 6) ibould be Laos senitive to parameter estimation.

go ow 1W them mSth so tleo no ad high-activity perlds is am imfet-

Ml ow. e lyvt mare m pI11os*I o e InterM L and the come sweetu

tlh em rt fe tIM.

7.1 at* Antti" fta - us on

S folim diocuamiak ad d ve&Ui of. er depsnses free, the

so" Am do NOe hiheOWM daft A e"b Sa efmtstm ad dt a4 s he
mhinao a C and W It. (2 , r6 t .Mn. iftthe M "V p- -Sos.

Is hebi" Mmy Sl; e dSW maiem S 1 bb oud aind MWCA be shipped hp the
omem sovsw.b pataso it do usAu a the data samlas. Bkely, tbe

OW to I md-S dosh dmam g kbosi to be al wlszmly correct. DevA-

ctim sm bomm of ex spiet bdkihitn 4ffse ib remelts in "--qr very



short intervals than would occur under the NW? assumption.

To proceed with the malysis of the detrended high-activity data, in Table 10

we give results of several tests for dependence of intervals in the process. The

normalized, estimated first serial correlation coefficient (n-1)l/2 1 has a

value -2.5532, higher then the 12 level of the normal distribution, while the

tests for independence based on the cumulated periodogram (raw interval spectral

density estimate) using the Kolsogorov-Smirnov statistic D/2 and the Anderson-

Darling statistic W2  (Cox and Lewis, 1956, Ch. 6) are just significant at a

is level.

We note that the smoothed interval spectral density, as computed in che

SASI-VI program, shows no characteristic departure from flatness, and serial

correlations beyond the first are small. Thus, there appears to be only a resid-

ual dependence n th& lntervils, possibly due to the detrending or a residual

trend.

Similarly, the estimated spectrum of counts (Cox and Levis, 1966, Ch. 5;

Levis, 1970) has no significant departure from flatness, shoving that a Poisson

process is a tenable hypothesis for the detrended data and consequently a NIP

hypothesis for the original data.

Nowev r, sma very subtle departures from exponentiality appear when one

looks at the interval properties of the detrended process. These are given in

Table 11. In the first place, the estimated coefficient of variation of times

between events, C(X') is smaller than 1. Estimated from five sections of the

data, it has value &(X') a 0.9673, with estimated standard deviation 0.0775,

which is too large to give conclusive evidence of departure from the value

C(X') - I for a Poisson process.

This artifact of the data shows up clearly in an estimate of the intensity

function, af(t). There is a definite notch at zero in the estimate af(,t)

(Cox sad Lewis, 1946, Ch. 5). Thus, there are only 720 observations within A

of the origin, and subsequeatly the estimate is essentially flat, never deviating

in any interval A from the modal value of 1,000 by more than 50.

Checking of the transaction initiation process shoved that there was, in fact,

a sinsum tiam between transaction initiations imposed by the system. A simple

model of a Poioson process with blocking (Type I counter) is sufficient to

account for the deviatioas from a Poison process,

Another artifact in the data appears in the fact that th. e iated coeffi-

clents of skewnevs and kurtosis, y1(X ) and Y2( ') for the data (5.2363 and

68.3916 in Table 11) are large compared to the Poisson process values y (X) - 2,

IiI
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Y2(X) a 9. These are due to occaseal very large times between traaaction

initiations; these seem Co occur in very short periods of high variability of

times between transaction initiations. This shows up an Figure 5 as the opike

at about t - 3000.

No explanation has been found for this departure from the NHPP; it could be

due to special procedures in the use of the system but in any event is too minor

to affect practical use uf the MMP model in evaluating such a system.

7.2 Loc-Activity Data - Test for N?

The low-activity data, after detrending with an estimated rate function

A(t;&) which is the integral of an exponential pol)ylosial of degree 8, to give

T- - A(Tl), T - A(T2),..., shows a very definite indication of departure from a

Poisson process. For (X'), jI(X'). y2 (X'), we obtain values 1.475. 4.1233.

21.716, respectively, and these are too large to be consistent with a Poisson

hypothesis after detrending.

The data also shows considerable interval correlation. A detailed analysis

will not be given here, especially since the detreading process is not completely

valid. However, as remarked earlier, the low-activity data after detrending is

consistent with a cluster process hypothesis. We emphasize that "consistent"

here refers only to matching of gross characteristics of the observed sad theo-

retical processes; there Is no know formal way of verifying a non-homogeneous

cluster process hypothesis.

8. Discussion

The outstanding feature of this data is the oscillatery mature of the rate

function In both the high and low activity periods. Such oscillatory behavior

is wsaolly investigated by spectral alysis, but tblaof course, Is applicable

only to stationrey data. The data shows a gross time-of-day effect superposed on

the oscillattos, and It is not simple to filter this out, most particularly

because the period of the cilatIon is long, i.e. low frequency. It is, there-

fore, liely to become mixed up in a spectral analysis with long term evolution-

my (time-of-day) trends.

evrtheless, an atteapt me mode to emxate the cyclic effect in tims

periss H sad L Ny

(a) detrendkug (Section 7) aftet fittIfi4 an owponemtlti polynomial of

(b) comutig the count spectrm of the detrtmadd data using SASK-VI.

The result of these speteral alysis sobod geoeralli' flat setra, with

peaks at a low frequency correspoeding to a rough Ses at the frequency of rthi I



cycle, which was obtained from Figures 4 and 9. There seem to be no evidence of

a fUsed frequesny cycleI this would show up as a sharp peak in the spectrum.

The cycles obeetved in this exploratory analysis of a single series of events

in the system bring up some interestina, difficult, and as yet, unresolved

m'thodoloical end phenomenological questions.

(1) The global techniques for rats function estimation need to be extended

to larger sections of data as the best overall way of looking at this

data. The moat practical way of doing this would appear to be to apply

the technique to non-overlapping or overlapping sections of the data.

The ftoblm of Joining sections might lead to (exponential) spline

function techniques; am problem of testing then arise.

(2) The question arises as to what causes the oscillatory or cyclic effect;

in the Introduction we pointed out that the transaction initiation

process is an output or response process so that it is presumably driven

by other processes associated with the system (e.g. message arrivals).

The Iplcations of this from methodological point of view are twofold:

(a) The deterministic rate functio estimated in previous sections

might be considered, at least in the micro-aspects, to be purely

descriptive. There is a possibility that what we are seing is the

affect o' cogpstion in the system (e.g. OL/I couponent), and the

data my perhaps be best described by something like a self-excit-

ing process (Rlakes, 1972), which is the point process analog of an

autoregressive system. This would not be inconsistent with our

findleas, sauce (linear) self-exciting processes are special types

of cluster processes (Is***e sad Oaks, 1974). One problem with

the above Interpretatlea of the cyclic effect is that we would

expect more osillstory effect during high activity periods than

during ly actvit9y periods. Noegar, jut the opposite is true.

(b) Since the observed transaction initiatioc procesa is driven by

other processes associated with the system, a fuii description of

the behavior of the system would involve an attupl to correlate

the tsesacte, naititise pseas studied is this paaer with pro-

ceasses at other points of the system. Is particuLar, it would be

of Isterest to oorrolto the trnalsactlom, Udistioa process with

the prosess of message arrivals from termisnal. It woud also be

desirable to correlate the tramsectoen iLtiation process with t,,

successive reaps" times experienced by users of the system.

There are my methodological problem In smalysing very non-statimary j
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system, in particular the problm of eatimatint correlation and/or coherence.

For the present case, the fact that the high activity data is close to Poisson,

although non-homogeneous, should maks development of the necewsary methodology

simpler. The work of Cox and Lewis (1972), and particularly Cox (1972), should

be useful.
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ThA I

One-Way .owlyvis of Variante for Counts.
Transaction InitiatIm Proces for Day 2.

Counts in -HI Counts
Group 400 Unit Ti In Unit Tim

I Intervals Inti-rval x I a

1 1034 0.215A 4.5638 5.6635 2.3798

2 1742 0.3629 6.5178 1.6084 1.2682

3 2455 0.5115 7.6421 3.5629 1.8876

4 1877 0.3910 6.6108 3.8181 1.9540

5 2841 0.5919 8.3752 1.4157 1.1898

6 2925 0.6094 8.5412 0.6898 0.8305

7 2446 0.509 7.7540 1.0866 1.0424

8 1012 0.210B 4.3684 6.8893 2.6248

9 1910 0.3979 6.7616 2.5957 1.6111

10 1671 0.3483 5.9692 6.8401 2.6154

11 1988 0.4142 6.7364 4.9443 ?.2236

12 1880 0.3917 6.6715 3.0682 1.7516

i,80. 54 20  2%42.1826

o'. 7126

i1



T~ABU 2

Sample Characteristics of Times--3twen-Events.
Transaction Initiation Process for Time Period h.

n number of transactions initiated 1999

t period of observation 11936.6066

estimated mean time betven trans- 5.9698
action initiations

e(X) estimated coefficient of variation
of timn between transaction initiations 1.0533

Y l(X) estimated co-iffcient of skeiness of times
between trausaction initiations 6.7399

Y2(X) esLimated coefficient of kurtosis of
times betwdeen transaction initiations 107.7282

x m taisim tima botween transaction
fnitiations 133.6488

_Min  minimim time between transaction
initiations 0.0152

3I



TARIZ 3

Sample Charwctaz'istfr~a of Tl'msoetween-Eveuts.
Transactiou Inititisom Process for Ton Sections

of Tim reriod f.

sample .d. of coeff. of Doaff. of coeff. of

m an vs lsion sq sesg kutasis
siia T Y (X) 2

1 7.4645 0.5561 0.8430 2.3096 11.4548

2 6.0584 0.3577 0.8328 2.2653 12.1494

3 5.4876 0.5414 1.3916 7.7614 84.6585

4 6.1348 0.3822 0.8759 1.1901 3.9449

5 5.0611 0.28$4 10.7954 2.9991 18.6264

We£- v *.. %W seas I -aa• w uoui~jj u. ,, 1 u,,ywiw 2o.231 9.6911

7 7.3992 0.7779 .4440 8.0075 89.8598

6 6.2456 0.3831 9.8652 1.8087 7. lz s

9 4.2847 0.2425 0.79" 1.6654 6.6807

l0 4.5566 0.2513 0.7750 1.7533 8.1512

5.9706 0.4137 0.959 3.2026 25.2341

S.d. o 0.3591 0.050 0.0783 0.7952 10.4197



TAML 4

Values of Maximum Log-Likelihood ent Test Statistic in NHPP
Exponential Polynomial Rate Function for Times Betwen

Transaction Initiations for Time Period H.

degree of muiuim absolute test
Polynomial log-likalihood difference statistic

r mxlog. L 6 U

1 -5563.8 3.8387

2 -5562.8 1.0 1.5727

3 -5549.4 13.4 5.3138

4 -5548.9 0.5 -0.4437

5 -5539.9 10.0 -4.2081

6 -5537.0 2.9 -2.6188

7 -5536.9 0.1 0.0188

8 -5536.8 0.1 0.1211

9 -5536.8 0.0 0.2038



I 3titd Val"*e of tke C" cet (a u )
Expo~iaal Polynomial Rate 7Tmctiss (Ds!" v4f) far

Tim" Sewe Transactift dtatious for Tim Period H.

0 -2 138 -2.1301

13.163VIO0 3.7716

2 -2.2607xK10- -32.2109

3 1.021M10 173.66'60

4 -2.12Sf -1 -432.1270

468.4494

-2
4X01120



TABUZ 6

Smple C aractoeist cs of Times-Setwon-Events.
Traaeaction IniitionPrmass for Tim Period L.

J *1
a n rmbe of transactions initiated 1258

t period of observation 13819.51927

- estimated mean tim between trars-
action Intiations 10.9809

emI) estimated coefficient of varlacion of
times between transaction initiations 1.6563

I:1cz) estimated coefficient of skewness of
times betwven transaction initiations 3.7524

12(X) estimaut coefficient of kurtosis of
time betveen transaction initiations 18.9686

_________ Initiations 145.4241

, x. nOzaim time between transaction
initiations 0.0263



TANA I
I TWL iz~~rs+ Ao /me-lamb r

Trameacta, ILtlatiZ e ftocess fa Fi1s sectin
of TMe Peled L.

OWmple GAed. of 'f f Io cooeff. of coaff. of

O I(x) k eM 2 M

1 18.4683 1.6760 1.4378 2.2573 7.9515

2 12.5333 1.2289 1.5534 3.5112 16.6713

3 9.2118 0.9318 1.6015 5.0123 32.5160

4 8.2978 0.9430 1.8005 4.2290 23-21%2

5 6.2124 0.3f06 0.9706 3.74,94 23,7669

10.9459 1.0321 1.4728 3.7519 20.8242

s. d. m"an 2.1390 0.2116 0.1386 G.,,32 j .0867

____ ___ ___ : ~~



Valun of .Sm Log-rubslib..d mi Test Statistic i u W?
bemmisl ?.lyomta Rate Pmettm for Times itwam

? raW-.Scti Initlatlms for Time PerIod L.

.... em - btseite -
d om e pof yma1 1I.-lklbMod differece test statistic

r anlgL 6 ur

1 -4203.7 1.6960

2 -4203.6 0.1 1.2031

3 -4200.4 3.2 -2.4203

4 -4199.2 1-2 h. 51p

5 -4191.0 3.2 -3.6703

6 -4190.2 068 0.4564

7 -4187.4 2.8 -2.3417

8 4174.4 13.0 -5.0208

- -- 5.9505

10 ---- 2.7145

n

1~ r



Ye a m I WN~R twk V f ) o rL"

Titme Degma TrUm a S thstd ja r Tim Period L.

AA a 0'

0 -2.4 -2.4784

1 S.75754O-  7.9566

2 -2.404IO' "4  -459.1064

3 1.690S%10- "62.4093

4 -5.1474nr " ' 3  -18774.5509

5 8.2A4sxlO3 1 7  41404.4332

-6 7.17I - 1  -4.9991.0659

7 3.2n4n3 - 2  31307.4980

8 -$. 9623x10 3 0  -7958.3157

, 4



TABLE 10

Tests for Dependence on Serial Number and Dependence
etveen Intervals. Detrended (NtPP' Exponential Polynomial

Rate Function of Degree 6) Transaction Initiation
Process for Time Period H.

n mber of transactions initiated 1999

A 1 estimated serial correlation coefficient
of lag 1 for times between transaction
initiations -0.0576-

(A-1) i  -2.5532

Tests for serial independence based on
cumulated periodogram

DU/2  Kolmogorov-Smirnov statistic 1.4897

W2*12 Anderson-Darling statistic 3M9941

upper 1Z point is 1,318

upper 1Z point is 3.857



Sample Characteristfts of Ties-Between-Events.
betrended (NM Exponenilft lynomi Rate Function
of Degree 6) TransctUon z4titiaUn Process for Time

number of transactims initiated 1999

to period of obeqrvatins 1999.02

n* stmt~ed wan ttS betw64m S ransaction Wiatim 0."998

(X') estimated coefficient of variatn
of b etween transaction 5 i niitionos 0.9784

Iesiae') .tf tedcoefficient o awss of times
betwen transaction initiationz 5.2363

11a .axtmum tims betwem transaction
ini'iations 17.4752

x' v.nimum ti n between tramaction
initiations 0.0031

<I
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